If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-7n^2+23n+20=0
a = -7; b = 23; c = +20;
Δ = b2-4ac
Δ = 232-4·(-7)·20
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-33}{2*-7}=\frac{-56}{-14} =+4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+33}{2*-7}=\frac{10}{-14} =-5/7 $
| t+–11=–14 | | 16r-8=26r-7(6r-8) | | -3^2+2x-7=(1-3x)*(1+x) | | 26=r/16 | | 2x-26=98 | | x-3÷4=8 | | 9x+9=107 | | 2/x-8=2 | | x/4+7/10=x/5 | | 14h+9=34h−7 | | 86-5p=6+4p | | 10x=+9 | | 12+–9h=–60 | | s+21/6=42/3 | | 15+6p=51 | | n=63n+5 | | -5(2x-1)=17-2x | | 2.x+4=-x-4* | | -2c+6=-8= | | 12x2+8x+10=0 | | h-549=350 | | 1/2q-4=73 | | 5^2x+3=28x+1 | | 85-5p=6+4p | | -x+6=6-x | | 19-s=13 | | 2-(3x-2)=7x-2(3x+2) | | 8(k−88)=48 | | -6=k+10 | | 2(2p-p+p+3p)-40= | | y=21/7 | | 7(f+2)=56 |